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Abstract: In semiconductor manufacturing, a low defect rate of manufactured integrated circuits is crucial. 
To minimize outgoing device defectivity, thousands of electrical tests are run, measuring tens of 
thousands of parameters, with die that are outside of specified parameters considered as fails. However, 
conventional test techniques often fall short of guaranteeing acceptable quality levels.  Given the large 
number of electrical tests, it can be difficult to determine which electrical test to rely upon for die quality 
screening. To address these issues, semiconductor companies have recently begun leveraging artificial 
intelligence and machine learning to better identify defective devices while minimizing the fallout of good 
die from electrical tests.  To implement these advanced machine learning applications, a novel remote 
inference capability is also proposed.  By placing an inference engine and corresponding machine 
learning models at the assembly and test house, inferences can be made without any sensitive data 
leaving the assembly and test house.  The result is faster turnaround times on inferences, reduced data 
loss, increased security, and the enablement of advanced machine learning capabilities for real-time 
solutions such as adaptive testing. 
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Motivation 
 
In semiconductor manufacturing, a low defect rate of manufactured integrated circuits is crucial. To 
minimize outgoing device defectivity, electrical tests typically measure thousands, or even tens of 
thousands of parameters, e.g. voltage, current, or time delay. Univariate statistical techniques are 
leveraged to identify statistical outliers in various ways among these electrical tests performed, i.e. each 
test parameter is considered individually. One such commonly applied univariate techniques is Part 
Averaging Testing (PAT) [1]. For each test parameter, an upper and lower limit is chosen. Die that are 
outside of these limits are considered as fails. These limits can either be fixed statically for all wafers 
(SPAT) or dynamically for each wafer based on the measurement values’ mean and standard deviation 
(DPAT) [2]. PAT is best applied if the measurements follow a Gaussian, or normal, distribution.  Other 
techniques commonly used today contemplate how these test measurements are distributed across the 
wafer, and the failure rate of die within a given die’s vicinity on the wafer. 
 
Recently, however, the above-mentioned conventional test techniques often fall short of guaranteeing 
acceptable quality levels.  In today’s advanced semiconductor environment, thousands of electrical tests 
are performed to determine the quality of the die.  Given this large number of electrical tests, it can be 
difficult to determine which electrical test to rely upon for die quality screening.  Furthermore, many of the 
above-mentioned conventional screening techniques assume a normal distribution of the electrical test 
measurement results across a die population.  Finally, device quality may not be a function of any single 
electrical test result, but could be multi-variate in nature. 
 
To address the issues of a massively-dimensional test measurement space, the possibly non-normal 
distribution of electrical tests, and the multi-order interactions of individual electrical test measurements, 
fabless semiconductor manufacturers and integrated device manufacturers (IDM’s) have recently begun 
leveraging artificial intelligence and machine learning to better identify defective devices while minimizing 
the fallout of good die from electrical tests.  The end result is a reduction in testing costs and improved 
product quality.  In this publication, we will explore the application of modern machine learning techniques 
to predict devices at risk while concurrently expediting and/or reducing tests for die with little risk of 
defectivity. By employing more advanced, multivariate outlier screening techniques powered by machine 
learning, defective chips can be identified more efficiently with less fallout.  Additionally, the residual cost 
of test can be invested to more thoroughly screen devices exhibiting marginal quality to increase overall 
outgoing quality. 
 
To implement these advanced machine learning applications, a novel remote inference capability is also 
proposed.  By placing an inference engine and corresponding machine learning models at the assembly 
and test house, inferences can be made without any data leaving the assembly and test house, where 
much of the data used to make inferences already resides.  Furthermore, machine learning models that 
contain sensitive intellectual property remain secure within the assembly and test house.  The result is 
faster turnaround times on inferences, reduced data loss, increased security, and the enablement of 
advanced machine learning capabilities for real-time solutions such as adaptive testing. 
 
 
Approach 
 

Multivariate Anomaly Detection 

 
In order to implement the pass/fail classification of chips correctly, it is ideal to generate a multiclass 
classifier for each of the failure types.  However, there usually isn’t enough training samples for each type 
of failure, as is in the case of failed field returns, or RMA’s.  These types of situations are well-suited for a 
branch of machine learning called Anomaly Detection.  Anomaly Detection defines a boundary of what is 
normal and treats anything outside of this boundary as abnormal.   
 
Many univariate outlier screening techniques, such as PAT, are used today in the semiconductor industry 
for the purpose of outlier screening and can be considered within the field of Anomaly Detection.  Some 
multivariate Anomaly Detection techniques already exist in the semiconductor industry to find outliers in 
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wafer sort data [3]. However, these techniques typically use a principal component analysis (PCA) to 
transform the measurement parameters into a reduced set of new parameters with removed correlations. 
The same univariate method is then used to find outliers. A limitation of PCA is that it can only remove the 
linear dependence between parameters. 
 
Multivariate Anomaly Detection defines normal ranges, while allowing for correlated multimodal 
distributions for normal chips.  For Multivariate Anomaly Detection to work well, it is optimal to rely on 
selected features that have the most predictive power.  There are a number of ways to accomplish this 
input parameter selection.  One technique is to employ univariate feature selection using a failure label 
(e.g. a field return of burn-in failure).  By doing so, we isolate the measurements that are more critical to 
predicting a failure. 
 
It can also be important to choose methods that contemplate non-Gaussian distributions of the parameter 
population.  These methods can find outliers that are not seen in a univariate analysis, e.g. for non-
linearly dependent features. 
 
It should be noted that output from univariate Anomaly Detection methods can be used as input to 
multivariate approaches (rather than just the raw test parameter values). Table 1 describes the 
Multivariate Anomaly Detection techniques proposed, describing the pros, cons, and benefits. 
 
 

Table 1: Pros and Cons of Multivariate Anomaly Detection Algorithms 

 
 

Modeled Yield Outlier Screening 

 
A technique is proposed which identifies chips that are considered higher risk for failure by the machine 
learning model compared to typical die on the same spatial locations.  The basic algorithm approach, 
herein referred to as Modeled Yield, is to develop two sets of models: 
 
a)  A model that considers only spatial information. 
b)  A model that utilizes test parameter values and features generated from these parametric values. 
 
An ensemble of these two models identifies which die are likely defective, or low yielding.  Yielding die 
with low predicted yield are identified as likely candidates for early lifetime failure.  If the predicted yield 
considering only spatial information is high while the predicted yield including parametric values is low, 
the die are extremely likely to become failures.   Experience has shown that die with low predicted yield 

Algorithms Pros Cons Additional Benefits 

MV-1 

Able to identify outliers in a 
dataset that would not be 

outliers in another area of the 
data set. 

Sensitive to distance 
definition, especially for 

higher dimensional space. 

Could output nearest 
neighbors to particular test 

sample. 

MV-2 

Population does not need to 
follow Gaussian Distribution, 

just needs to be part of bigger 
set of clusters. 

Very sensitive to scaling of 
input, especially for higher-

dimensional space. 

Can assign cluster id to normal 
cluster as well. 

MV-3 
Not sensitive to scaling of input.  
Can handle mixed continuous 

and discrete inputs. 

May be harder to explain the 
result. 

Determine overall Variable 
Importance easily. 

MV-4 
Less sensitive to correlation and 

coupling of input variables. 

Easy to overfit.  Difficult to 
understand why particular 

sample is considered outlier. 

Hidden layer could be used as 
nonlinear dimensional 

reduction. 

MV-5 
Designed to capture 

nonlinearity. 
Anomaly sample needs to be 

small. 

Can obtain decision 
hyperplane (boundaries).  

Could be extended to 
classification coherently. 



APCSM 2020 

Page | 4 

can be an order of magnitude more likely to become field returns.  If the spatial only model predicts that 
the die should be high yielding, the increased likelihood of a field return increases to nearly two orders of 
magnitude. 
 
 
Results 
 
The above-mentioned multivariate anomaly detection and modeled yield techniques were evaluated using 
an actual production dataset which contained roughly 20,000 total chips of which roughly 50 chips were 
field returns (not simulated).  To predict field returns, input parameters were obtained from a wafer sort 
test insertion.  There were roughly 10,000 raw input parameters.  As a baseline to compare against, the 
industry standard DPAT outlier screening technique was used. 
 
The comparison metrics are False Positive Rate (FPR) and True Positive Rate (TPR).  FPR and TPR are 
common machine learning metrics and are calculated as follows: 
 

𝑇𝑃𝑅 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) (1) 

𝐹𝑃𝑅 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) (2) 
 
Where Positive = field returned chip, and Negative = good die.  Thus TPR is the percent of all actual field 
returns that are correctly predicted as defective, and FPR is the percent of die predicted as defective but 
are actually good die.  FPR can be interpreted as the amount of “overkill” population sacrificed to screen 
defective die for a given defect capture rate. 
 
To demonstrate the true production decision making process, the validation methodology shown in Fig. 1 
was employed to train and test each of the multivariate anomaly detection techniques. 
 

 
 
Figure 1 Validation approach to evaluate the multivariate anomaly detection techniques.  A sliding window 
of training and testing data, partitioned by time, is applied to the entire dataset to simulate a real 
production scenario.  nTrain = 20 timestamps, and nTest = 5 timestamps, where each timestamp 
contained virtually equivalent die count. 

For modeled yield, there are no training/testing partitions as this approach does not rely on a rank 
ordering or selection of input parameters as determined by a correlation to failures. 
 
For the baseline DPAT comparison, there were 38 total significant parameters identified by multivariate 
approach in each sliding window over the duration of the dataset. The reoccurrence of each significant 
parameter across the duration of the dataset was calculated, and those parameters that appeared at least 
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25% of the time were selected.  25% was chosen so that there would be a substantial amount of 
parameters to run DPAT. 
 
Results for all the testing windows are shown in Table 2 for FPR = 1%, 2%, 4%, and 6%. 
 

Table 2: Algorithm Comparison 

 
False Positive Rate (FPR) 

1% 2% 4% 6% 

MV-1 14.0% 21.7% 52.2% 76.5% 

MV-2 NA 25.4% 52.7% 69.3% 

MV-3 -16.9% 44.6% 70.0% 91.7% 

MV-4 36.8% 36.9% 57.2% 78.0% 

MV-5 NA NA 31.9% 94.1% 

Modeled Yield 46.9% 83.6% 137.4% 154.9% 

 
 
Results in Table 2 show MV-1, MV-4, and Modeled Yield techniques are all able to capture more field 
returns in respective portions of the total chip population identified as at-risk (“overkill”).  Overall, the 
Modeled Yield technique performed the best for this dataset.  This would imply that for this dataset, yield 
at wafer sort is a good predictor for field returns.  It is important to note that this is not always the case, as 
it has been observed that for some datasets Modeled Yield does not outperform the other multivariate 
techniques.  Additionally, we have observed that different Multivariate Anomaly Detection techniques 
outperform others for different datasets and/or chip product lines. 
 
Deployment 
 
Once perfected and trained, machine learning models must be deployed to and integrated with the overall 
product manufacturing flow.  This likely requires deployment of prediction models to multiple remote 
facilities in today’s distributed manufacturing ecosystem. 
 
The term “Edge Prediction” as used in this paper refers to deployment of machine learning to facilities 
where production test and assembly operations are performed.  Distributed machine learning requires 
reliable mechanisms to transport and update prediction models, compute infrastructure at remote 
facilities, timely access to test data, and potentially, integration with factory process automation and 
control systems. 
 

Use Cases 
 
Compelling reasons to employ edge prediction include: 

1) Die Grading and Exclusion – where traditional statistical outlier detection, or better yet, more 

advanced machine learning models are used to grade individual die based on their performance 

in contrast to their test population or historical data. 

2) Computation of Die Quality Metrics – based on available lot, wafer and/or die specific data such 

as lot equipment history, parametric test, visual inspection and electrical test operations to infer 

the likely quality of subject die and to prescribe either the avoidance of or requirement for further 

testing. 
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Deployment Challenges 
 
There are numerous considerations and related challenges when contemplating the effective deployment 
of machine learning.  

- What are the timing constraints for prediction? 

- How will the necessary input data be collected, merged and sourced to the prediction model? 

- What are the confidentiality and security requirements for the prediction model? 

- When can and should predictions be run? 

 

1) Prediction Time Domains 

Different machine learning applications correspond with different turnaround time and input 

data requirements.  The most stringent of turnaround times are those executed during device 

test in real-time.  Inline predictions are based on the current data stream and any 

precomputed feed forward data such that the turnaround time represents a fraction of the 

overall device test time.  These real-time predictions must be tightly integrated with either or 

both test program and test platform.  Alternatively, other predictions are better suited to be 

computed by a post-process server-side implementation where the model can consume data 

from multiple wafers, lots, dates and test operations.  While these server-side predictions 

typically have a somewhat relaxed requirement for turnaround time, they frequently consist of 

more computationally exhaustive models, require larger data sets (e.g. lot, lots or date range) 

and may need to communicate the prediction results to other systems (e.g. update a wafer 

assembly map).  Real-time computations most commonly execute directly on test equipment 

control computers, but care must be taken to not slow the test operation.  Post-process 

computations should clearly be offloaded to local servers which can provide significantly 

more memory and processing power without impacting test operations.  This suggests that 

an effective machine learning deployment requires compute servers at each facility. 

 

2) Prediction Input Data 

Most predictions require data sets integrated across multiple die, wafers, lots, or dates.  

These data sets must be collected, merged and conformed before a useful prediction can be 

made.  For instance, consider the example of a split-lot tested on more than a single tester.  

To satisfy the prediction model data requirements, the data must be collected from more than 

one test system.  Further, prediction models are normally only applicable to data points from 

the last die touchdown or device insertion when a device has been retested. This requires a 

system to collect and merge data at the die level.  Lastly, for prediction models that consider 

data across multiple test steps, data may need to be stored for weeks to be available when 

the subsequent test or assembly operation is performed.  Taken together, these data 

requirements demand that a data store with intelligence to merge data is required at each 

facility where machine learning will be deployed. 

 

3) Model Confidentiality and Security 

Implementation of industry standard outlier detection algorithms may not raise much concern 

for confidentiality or security, but more advanced machine learning models and their key 

parameters may well be considered highly sensitive by the device manufacturer.  There are 
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several potential platforms upon which machine learning computations can be based.  Some 

of these are inherently more opaque than others.  For instance, a model compiled from C-

language will be binary in nature and would require significant effort to reverse engineer.  

Other machine learning platforms are, by default, much less opaque.  For example, the 

greater Python data science ecosystem is perhaps the most popular machine learning 

platform, and due to its Python heritage of open source, is difficult to produce an intractably 

opaque executable model.  For device manufacturers concerned with the confidentiality of 

their prediction models, deployment must also include forms of strong code obfuscation, 

encryption and/or server security. 

 

4) Prediction Timing 

Timing of real-time predictions is rather obvious; compute as the data is produced by the test 

system.  Timing the execution of post-process predictions is not as straight forward.  Post-

process computations are usually needed at manufacturing operation boundaries.  Examples 

include, when a wafer test is complete, after partial wafer tests have been merged, when a 

wafer lot has completed the wafer sort test operation or visual inspection operations, or 

before the start of the assembly operation.  Simple observation of incoming data does not 

provide a reliable trigger for when prediction models should be executed.  Machine learning 

can be thought of as a virtual test operation with associated yield loss, and therefore, requires 

integration with the overall manufacturing flow much like physical test operations.  This 

implies that a successful edge prediction deployment must also have integration points with 

the test and assembly facility manufacturing execution system (MES). 

 

Conclusion 
 
In this publication, we have demonstrated the possible benefits of employing more advanced, multivariate 
outlier screening techniques powered by machine learning. In order to make multivariate screening work 
well, prescreening of test measurements is required to reduce the noise.  We have demonstrated a 
second approach based on creating a proxy to the target variable when a target variable is difficult to 
obtain.  By using these approaches, the residual cost of test can be re-invested to more thoroughly 
screen devices exhibiting marginal quality to increase overall outgoing quality. 
 
Additionally, this paper discussed an approach for implementing a novel remote inference engine.  
Inferences can be made without any data leaving the assembly and test house by placing an inference 
engine and corresponding machine learning models at the OSAT.  This approach insures that prediction 
will be faster by reducing unnecessary data transfer over internet. Furthermore, sensitive intellectual 
property including test data and machine learning models remain secure within the assembly and test 
house.   
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