PDF/SOLUTIONS"

2023 PDF Users Conference:

AI for tomorrow's manufacturing and R&D

Location:

Santa Clara Marriott - 2700 Mission College Boulevard Santa Clara, California 95054 USA

Automotive Solutions 25th October 2023

This presentation and discussions resulting from it may include future product features or fixes, or the expected timing of future releases. This information is intended only to highlight areas of possible future development and current prioritizations. Nothing in this presentation or the discussions stemming from it are a commitment to any future release, new product features or fixes, or the timing of any releases. Actual future releases may or may not include these product features or fixes, and changes to any roadmap or timeline are at the sole discretion of PDF Solutions, Inc. and may be made without any requirement for updating. For information on current prioritizations and intended future features or fixes, contact sales@pdf.com.

PDF Solutions, Exensio, CV, Cimetrix, the PDF Solutions logo, and the Cimetrix logo are registered trademarks of PDF Solutions, Inc. or its subsidiaries. All other trademarks cited in this document are the property of their respective owners.

© 2023 PDF Solutions, Inc. or its subsidiaries. All rights reserved.

Automotive Market is growing fast

Increasing semiconductor percentage in cars

End vertical	Example	% of total 2020	% of total 2025E	2025 revenue projection	2021E- 2025E% CAGR
Automotive	ADAS, Infotainment Chassis	8.3%	12.0%	\$80.28	12.4%
	Smartphones	32.9%	31.5%	\$210.3B	3.0%
Consumer	TVs, Digital Set-Top Box	10.4%	10.5%	\$70.3B	2.6%
Data processing	PCs, Servers, Storage Media	37.7%	33.8%	\$225.6B	1.6%
Industrial	Automation, Healthcare, Security	10.7%	12.1%	\$80.7B	8.5%

Exhibit 24: Semiconductor worldwide revenue by end vertical, sales (source: Gartner)

Overall Automotive 2025: 80B USD, 12.4% CAGR

Source: Accenture

Exhibit 34: Subset of advanced & mature nodes in an automobile

Advanced Node

• --- Mature Node

© 2023 PDF Solutions, Inc.

PDF/SOLUTIONS^{**}

3

New technologies driving Automotive Market

EVs

Advanced Driver Assistance System Applications

Advanced Driver Assistance System Applications ~ NEW TECH (mytech2u.blogspot.com)

ADAS

Increased semiconductor percentage and complexity of the car

Health Check

Health Check to Enable Zero Defect across Supply Chain

- PDF provides a comprehensive health check to help you assess readiness to achieve Zero Defects for your automotive semiconductor products
- Assessment based on
 - AEC-Q004 standard
 - Industry benchmarks
 - Subject matter expertise

White paper

- Compare across industry
- Customized feedback to you

https://go.pdf.com/AutomotiveHealthCheck

Health Check: Basic and Advanced

- What do we mean by basic & advanced?
- Basic = mature technologies
 - Planar transistors ~22nm & above
 - Single die packages
- Advanced = newer technologies
 - 16nm FINFET & beyond
 - Multi-chip packages
- Note: "Basic" in automotive does not mean *easy*

Mapping between PDF Health Check vs AEC Q004 Automotive Electronics Council (AEC) Q004

Section				Sul	b sections				
3.0 Product Design	3.1 Design Failure Mode Effects and Analysis (DFMEA)	3.2 Redundancy	3.3 Built-in Self Test (BIST)	3.4 Design for Test (DFT)	3.5 Design for Analysis	3.6 Design for Manufacturing (DFM)	3.8 Simulation & Modeling	3.9 Characterization	
4.0 Manufacturing*	4.1 Process FMEA	4.2 Statistical Analysis of Variance	4.3 Control Plan	4.4 Statistical Process Control (SPC)	4.5 Lot Acceptance Gates	4.6 Audits			-
5.0 Test	5.1 Part Average Testing (PAT)	5.2 Statistical Bin Yield Analysis	5.3 Data Collection Storage and Retrieval	5.4 Screens					Design
6.0 Application & Capability	6.1 Industry Standards	6.2 Environmental Stress Testing	6.3 Stress Strength Analysis	6.4 Systems Engineering	6.5 Product Derating			Sort, BI, Final	13%
7.0 Continuous Improvement Methods	7.1 Wafer Level Process monitoring	7.2 Process & Product Improvements	7.3 Product Reliability Monitoring	7.4 Defect Monitoring				33%	
8.0 Problem Solving	8.1 Problem Solving Techniques	8.2 Failure Analysis Process					A	ssembly	Manufacturing (Fab & WAT) 45%
Part of Health Cl	heck							5%	
Part of Health Cl	heck	lealth Check							

*Important to be able to audit your foundry. If they use PDF, then this will be easy.

Health Check Highlights: Design

	New Fritrants		Incumbents			Best in Class Incumbents					
Category	Bas	7	Advanced	asic		Advanced	Basic		Ac	lvanced	
Design	69	%	44%	86%		52%	95%			75%	
Fab Mfg	59	%	40%	92%		7t 1 6	100%			<mark>; </mark>	
Packaging	74	%	65%	94%		88%	95%			100%	
Test	71	%	55%	74%		54%	95%			83%	

Differences between New Entrants and Incumbents

- Surprising big gap in basic design techniques
 - Example: Fault coverage

Differences between Incumbents & Best in Class

- Gap in advanced design techniques
 - Not all use fault localization
 - Not all have in-chip sensors

Health Check Highlights: Fab

	New Entrants		Incum	pents	Best in Class Incumbents		
Category	Basic	Advanced	Basic	Advanced	Basic	Advanced	
Design	69%	44%	6%	52%	95%	75%	
Fab Mfg	59%	40%	92%	76%	100%	100%	
Packaging	74%	65%	94%	88,	95%	17 J%	
Test	71%	55%	74%	54%	95%	83%	

Differences between New Entrants and Incumbents

- Large gap in process control knowledge
 - New entrants are fabless
 - Big advantage for IDM incumbents & experienced fabless companies

Differences between Incumbents & Best in Class

– Lack of margin WAT structures for fabless incumbents

Health Check Highlights: Packaging

	New Entrants		Incum	bents	Best in Class Incumbents		
Category	Basic	Advanced	Basic	Advanced	Basic	Advanced	
Design	69%	44%	86%	52%	95%	75%	
Fab Mfg	59	40%	92%	76%	100%	100%	
Packaging	74%	65%	94%	88%	95%	100%	
Test	71%	55%	74%	54.	95%	%ر ۲	

Differences between New Entrants and Incumbents

- Large gap in assembly process control knowledge
 - New entrants are fabless
 - Big advantage for IDM incumbents & experienced fabless

Differences between Incumbents & Best in Class

- Best in Class fully adopt assembly traceability

Health Check Highlights: Test

	New Entrants		Incum	pents	Best in Class Incumbents		
Category	Basic	Advanced	Basic	Advanced	Basic	Advanced	
Design	69%	44%	86%	52%	95%	75%	
Fab Mfg	59%	40%	92%	76%	100%	100%	
Packaging	74%	65%	94%	88%	25%	100%	
Test	71%	55%	74%	54%	95%	83%	

No Significant Differences between New Entrants and Incumbents

- Test is the easiest place to close the gap, especially for fabless

Differences between Incumbents & Best in Class

- Best in Class wide adoption of both Escape Prevention & Outlier Detection
- Incumbents use, but not as completely

Health Check Results: Overall

	New Entrants		Incumbents		Best in Class Incumbents	
Category	Basic	Advanced	Basic	Advanced	Basic	Advanced
Design	69%	44%	86%	52%	95%	75%
Fab Mfg	59%	40%	92%	76%	100%	100%
Packaging	74%	65%	94%	88%	95%	100%
Test	71%	55%	74%	54%	95%	83%

Some surprising strengths

- Most companies use on-chip PVT sensors
- Widespread adoption of cloud storage
- Most use ECID for traceability
- Areas for Improvement New Entrants
 - Fault Coverage (!)
 - Details of Fab & Assembly Process Control

Areas for Improvement – Incumbents

- Fault localization
- Adoption of traceability
- Margin WAT
- Quality Shield

PDF/SOLUTIONS"

ScribeCV – PDF's Solution for Margin WAT

Device, Yield, Parametric, Leakage

Exensio Advanced Quality & Ops Path

 Offline Reporting Floor Monitoring OEE reporting Stoppages / RE losses 		 Real Time Rules Outlier Screens (DPAT, GDBN) Escape Prevention (eg Test count) 		
Operational Visibility	Operations Shield	Quality Shield	Machine Learning	
	Real Time Rules Site2Site Yield UPH Limit 		Model Based Prediction Model Based Screening • Predictive Binning • ML Outlier Screening • "Bring Your Own Model"	

Solutions for SiC Devices

Silicon Carbide - Introduction

Great for Power IC and RF

source: onsemi

Challenges with SiC Manufacturing

- Complicated (in-house vs outsourced) material flow
- Lot reshuffling: wafer & lot genealogy
- High defectivity
- Equipment connectivity (150 & 200 mm)
- Small pucks vs large boules
- New types of subsurface defects hard to detect with conventional means
- No wafer scribe or ambiguous wafer ID
- Defect sampling for SEM Review: too many
- Unpatterned vs patterned wafers: registration

Compound Semiconductor: stoichiometry matters!

ightarrow covered in this talk

>250 polytypes: stacking faults are common

 \rightarrow inquire for more detail

source: ChemTube3D

SiC Package for Fabs and IDM's

"SiC is where silicon was decades ago..."

SiC Defectivity

Pdf representative data

SiC End-to-End Manufacturing Analytics

SiC Defect Management: Proactive vs Reactive

substrate defect

Managing Complexity with Full Traceability

Complex Material Flow

In-house vs dual supplier: 3⁶ (>700) possible flows

Complex Supply Chain varying outsourcing strategies

PDF/SOLUTIONS"

Deployment Examples in SiC Manufacturing

Solutions for ADAS ICs

NPI & FA Diagnostics with Siemens Tessent + Exensio

Partnership with Tessent for BIC debug and FA

PUF/SULUTIONS

Design to Enable Zero Defect

Identify and Reduce Layout dependency

CV® Core: in-chip reliability monitor **FIRE**: identify all layout patterns in design Exensio[®] Enterprise Analytics Reliability or Performance **ProductLayout** Power And I have a full Layout Attributes vidths, lengths, spacing, INC. BARK Chip/Module/System Wafe ounts, densities, borders Field Deployed Systems Chip/System Design Manufacturing Assembly and Test IN SHORE antennas, etc **Templatyzer**: reduce library ----ARE STREET Future t < 0 t = 0pattern count by 10X Ontimize Next Feedback Key Issues to Test Optimization Runtime optimization Value proposition (\$\$) Chip Design · Optimized flow Longer reliability Manufacturing Power/Perf vs. Reliability Lower overall cost 1.Greater reliability & predictive Improved Quality Failure prediction PDF Library Traditional Library maintenance (uninterrupted service \rightarrow \$) 2.Product optimization (MWh → \$) × 1.7 mm attern proteanTecs: Monitor health & Family performance of chips, from design to field. DR is replaced by limited pattern (building blocks) → Developed from rule based DR → Can still design complex product, and Complex process – design interaction with regular pattern **Classification and Profiling** Operational Sensing FIRE/Templatyzer for right-first-time / CV[®] Core & pTecs for chip-level sensing Performance & Degradation Monitoring **PDF**/SOLUTIONS^{**}

Embed in-chip sensors for monitoring

CV[®] Core for Automotive

CV® Core Sensor for Automotive Applications

Exensio CV® Core System

Problem	Solution	CV [®] Core Offering
Test Escapes	Adaptive Test	Full Suite
Reliability Fails	Selective Burn-in	Circuit Aging Sensors
Advanced Package Complexity	Package Optimization	Package Performance Sensors
High Cost of Fails	Final Test Yield Prediction	Full Suite

Already implemented in multi-million units of ADAS SoCs

Macro name	Controller Macro	Sensor Macro	Interface	Aging Sensor	Performance Uniformity & Mechanical Stress	PVT sensor
Prod#1	Hard macro	Hard macro (combined w/ controller)	JTAG	1	1	Ν
Prod#2	Soft macro	Hard macros	JTAG + APB	1	7	Ν
Prod#3	Soft macro	Hard macros	JTAG + APB	1	8	Ν
Prod#4	Soft macro	Hard macros	Custom SPI	14	14	Υ

CV® Core: A view into the health of die fundamentals

© 2023 PDF Solutions, Inc. 32

Machine Learning

Machine Learning – Insights

Automotive electronics is getting more complex

- Processes, Packages, Chiplet interactions, etc.

No longer good enough to look at steps in isolation

- Correlating across stages brings new learning

Those new technologies generate more data

ML can find correlations that the best engineers miss

The system in package testing challenge

Exensio ML solution to scale prediction model training and deploy inference engine at the edge

Conclusion

- Electrification & ADAS driving rapid growth
- Many new entrants
- PDF: broadest and deepest analytics solution

With specialized offerings

- SiC package for EV products
- Advanced tools for ADAS &
- Machine Learning for applicable insights, across manufacturing steps

Thank You

PDF/SOLUTIONSTM

pdfsolutionsinc

Ŧ

pdfs.inc

0

pdf_solutions

pdfs_cn