PDF/SOLUTIONS

2024 PDF Users Conference - China

Parkyard Hotel Shanghai – 669 Bibo Road, Shanghai, China, 201203

Automotive Solutions

Marc Jacobs – Sr Dir Solutions Architecture, R&D 15th March 2024 This presentation and discussions resulting from it may include future product features or fixes, or the expected timing of future releases. This information is intended only to highlight areas of possible future development and current prioritizations. Nothing in this presentation or the discussions stemming from it are a commitment to any future release, new product features or fixes, or the timing of any releases. Actual future releases may or may not include these product features or fixes, and changes to any roadmap or timeline are at the sole discretion of PDF Solutions, Inc. and may be made without any requirement for updating. For information on current prioritizations and intended future features or fixes, contact sales@pdf.com.

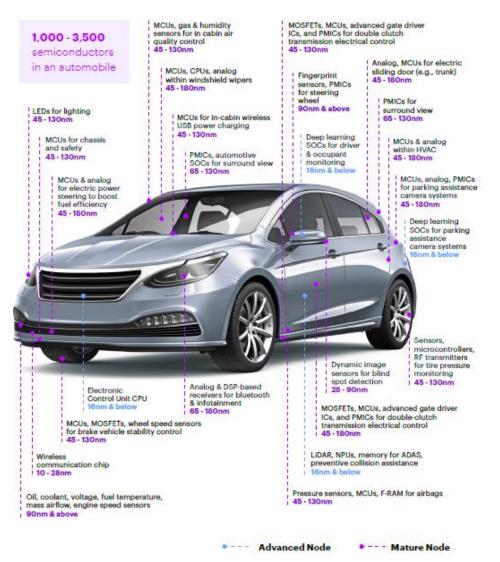
PDF Solutions, Exensio, CV, Cimetrix, the PDF Solutions logo, and the Cimetrix logo are registered trademarks of PDF Solutions, Inc. or its subsidiaries. All other trademarks cited in this document are the property of their respective owners. Exensio visualizations Powered by TIBCO[®].

© 2024 PDF Solutions, Inc. or its subsidiaries. All rights reserved.

Automotive Market is growing fast

Increasing semiconductor percentage in cars

End vertical	Example	% of total 2020	% of total 2025E	2025 revenue projection	2021E- 2025E% CAGR
Automotive	ADAS, Infotainment Chassis	8.3%	12.0%	\$80.28	12.4%
Communication	Smartphones	32.9%	31.5%	\$210.3B	3.0%
Consumer	TVs, Digital Set-Top Box	10.4%	10.5%	\$70.3B	2.6%
Data processing	PCs, Servers, Storage Media	37.7%	33.8%	\$225.6B	1.6%
Industrial	Automation, Healthcare, Security	10.7%	12.1%	\$80.7B	8.5%


Exhibit 24: Semiconductor worldwide revenue by end vertical, sales (source: Gartner)

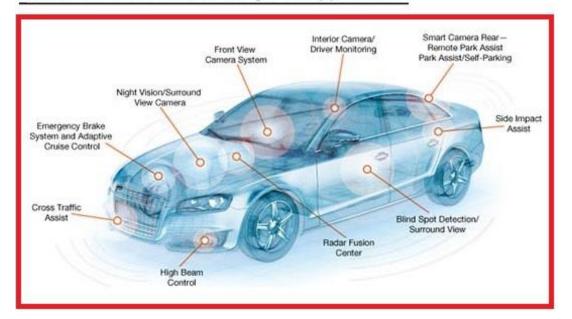
Overall Automotive 2025: 80B USD, 12.4% CAGR

Source: Accenture

PDF/SOLUTIONS^T

Exhibit 34: Subset of advanced & mature nodes in an automobile

© 2024 PDF Solutions, Inc. or its subsidiaries


3

New technologies driving Automotive Market

EVs

Advanced Driver Assistance System Applications

Advanced Driver Assistance System Applications ~ NEW TECH (mytech2u.blogspot.com)

ADAS

Increased semiconductor percentage and complexity of the car

PDF Can Help You Succeed

- Solutions for Fabless
- Solutions for Foundries and IDMs
- Specialized solutions for Silicon Carbide
- Software
- Equipment
- Test Structures,
- & Methodologies

Health Check

Health Check: Basic and Advanced

What do we mean by basic & advanced?

- Basic = mature technologies
 - Planar transistors ~22nm & above
 - Single die packages
- Advanced = newer technologies
 - 16nm FINFET & beyond
 - Multi-chip packages

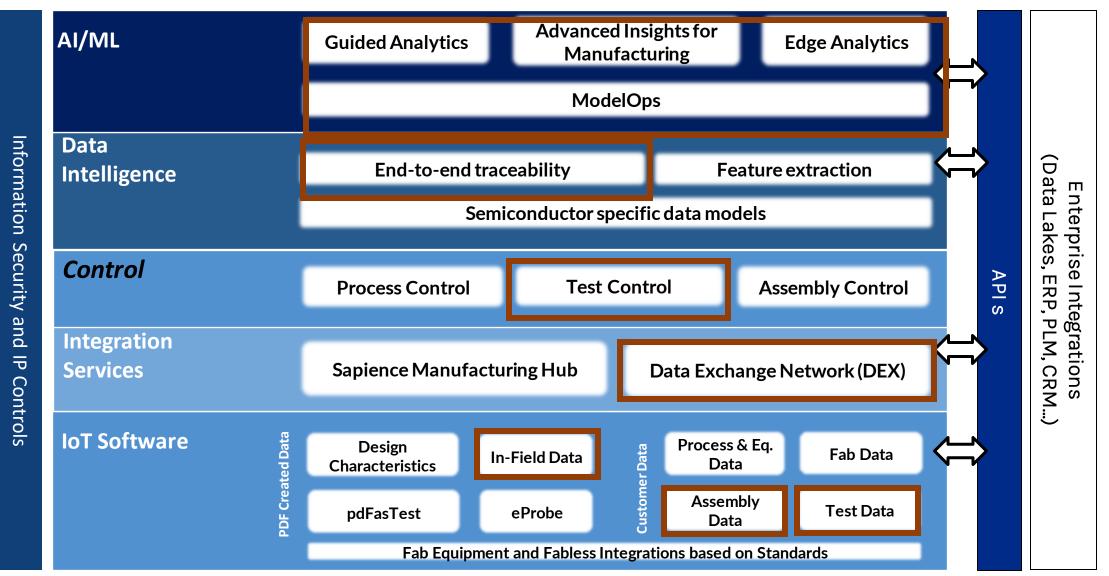
Note: "Basic" in automotive does not mean *easy*

Health Check Results: Overall

	New Entrants		Incum	pents	Best in Class Incumbents		
Category	Basic	Advanced	Basic	Advanced	Basic	Advanced	
Design	69%	44%	86%	52%	95%	75%	
Fab Mfg	59%	40%	92%	76%	100%	100%	
Packaging	74%	65%	94%	88%	95%	100%	
Test	71%	55%	74%	54%	95%	83%	

Areas for Improvement – New Entrants

- Fault Coverage (!)
- Pick the right Foundry if you are fabless
 - Regular layout
 - FDC with BIC control plans
 - Characterization Vehicles (CVs) for DFM
 - Margin WAT


Areas for Improvement – Achieving Best-in-Class

- Quality Shield
- Adoption of traceability
- Fault localization

Solutions for Silicon Devices

End-to-end Integrated Platform for Semiconductor Analytics

Silicon Product Lifecycle

Process Development	 Regular Layout Characterization Vehicles
NPI/Char	Characterization
Yield Ramp	 Accelerating Yield Analysis Machine Learning for Optimized Test
HVM	 Best-in-Class Operations at Test Supply Chain Visibility & Security
In-Field	Failure Analysis & Returns

Process Development Phase

Make the Process Right EARLY

Build on a solid foundation

- **Fix the problems early in the process**
- Don't wait for Test and hope to screen
- Test will miss things

Early means both

- Early in the development cycle
- -And
- Early in the process flow

Be the right fab / Pick the right fab

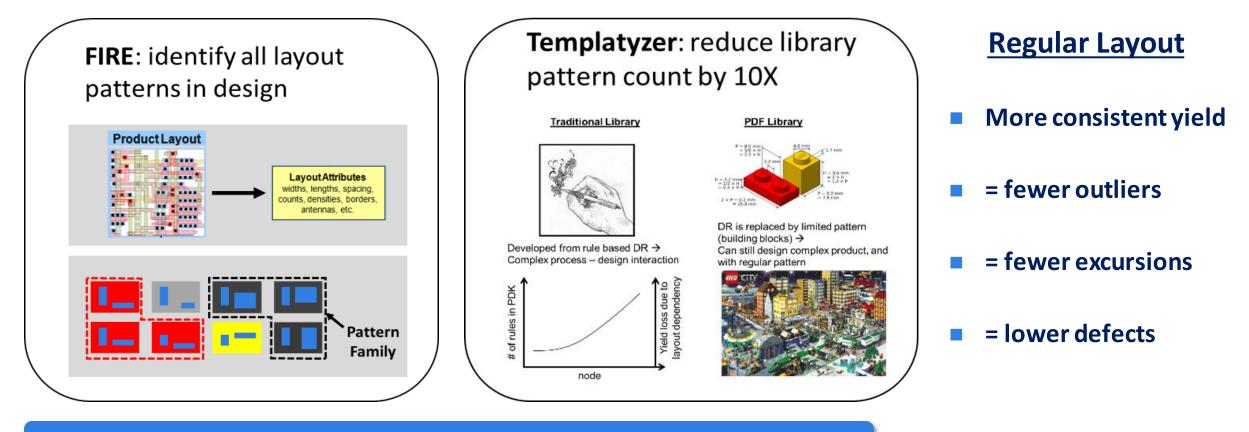
- What the customer wants
- Superior yield
- Excellent process control
- Fewer excursions

How to get it

- Regular layout
- Characterization Vehicles (CVs) for DFM
- Margin WAT
- **FDC with BIC control plans**

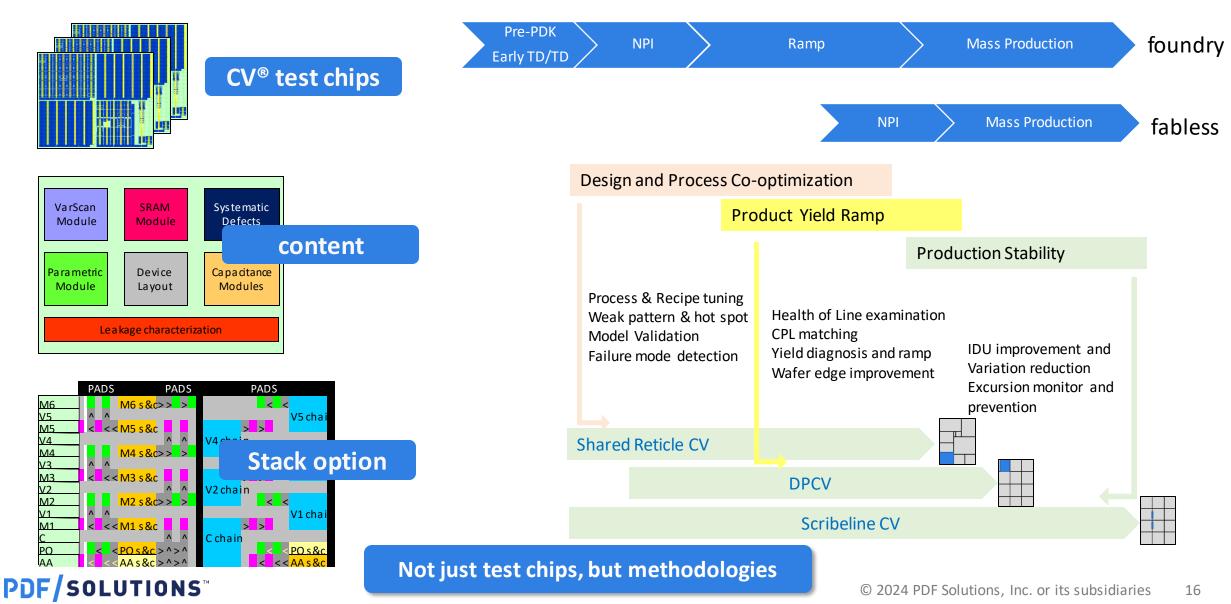
For Foundry & IDM Be the right fab

PDF/SOLUTIONS^{**}

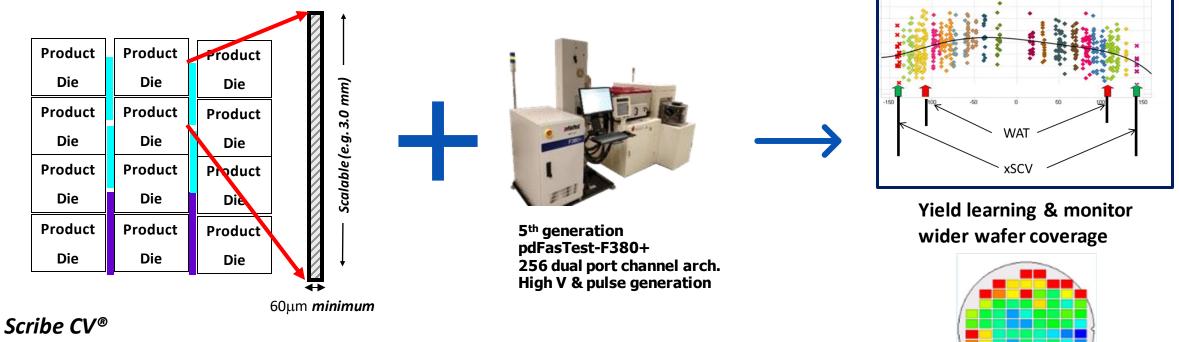

How to get it

- Pick the right foundry
- One that uses these methodologies

For Fabless Pick the right fab

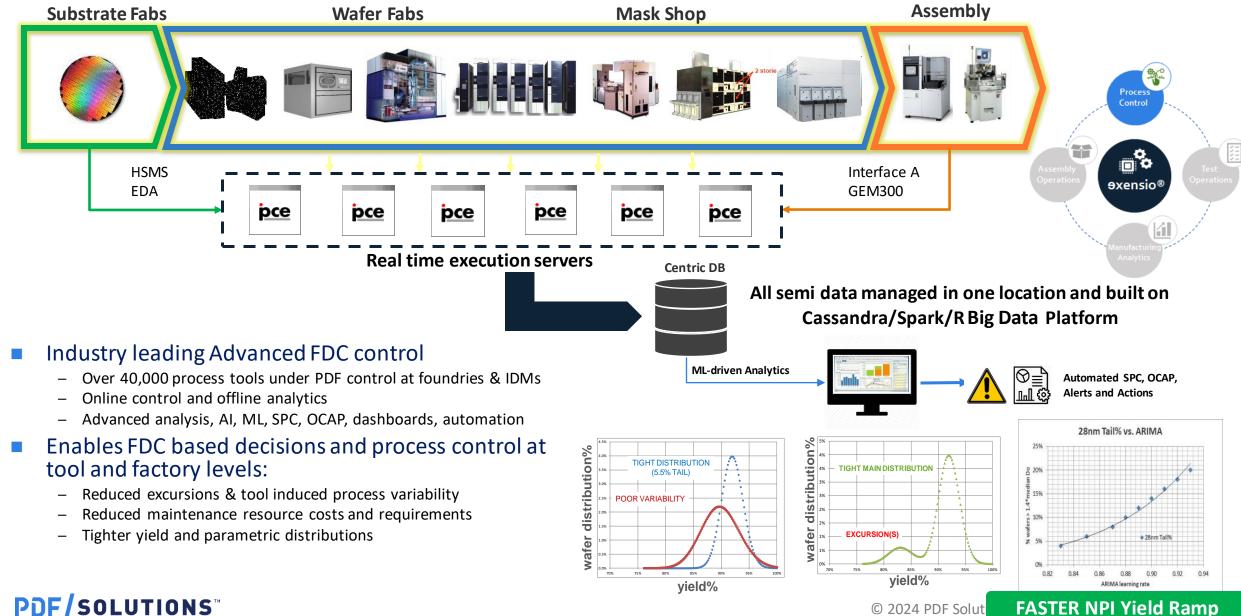

Design to Enable Zero Defect

Identify and Reduce Layout dependency



FIRE/Templatyzer for right-first-time

Characterization Vehicles & Test Structures



ScribeCV – PDF's Solution for Margin WAT

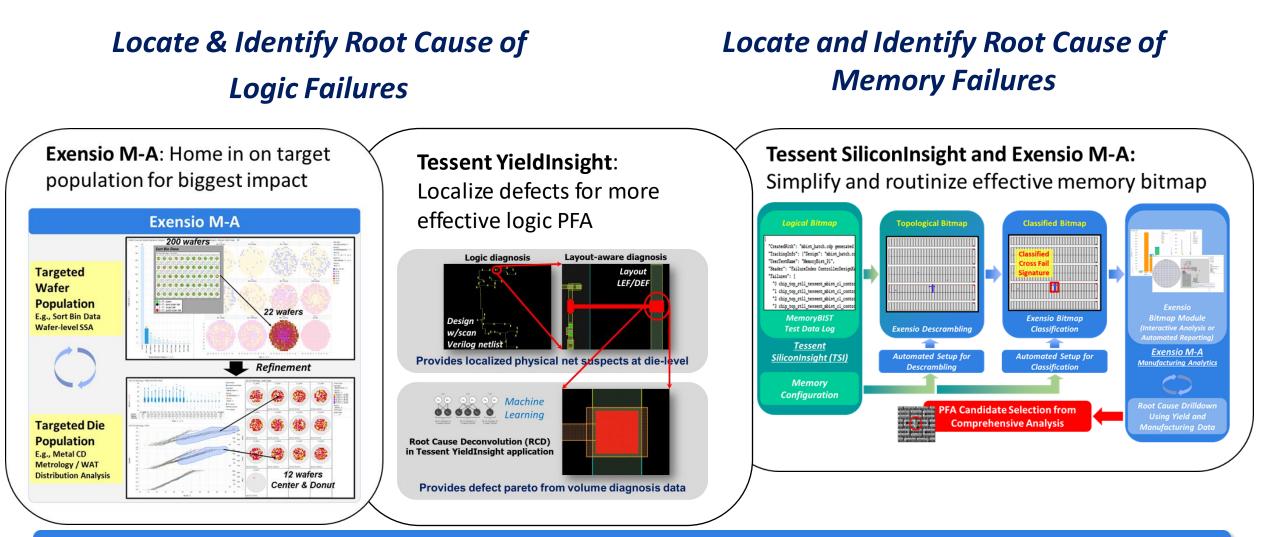
Device, Yield, Parametric, Leakage

Process Control: Advanced FDC for Semi Manufacturing

PDF/SOLUTIONS^{**}

© 2024 PDF Solut

NPI – New Product Introduction


New Product Introduction & Characterization Feature Matrix

Capability	Exensio Manufacturing Analytics	Partnership	Inc. Fail % 75.03% 7.34% 6.79%	Cum. Fail % 75.03% 82.37% 89.16%	Cum. Fail Pareto	360 - 300 - 260 -	Color by: CaleLot ■ Comp ■ Ref
Test Program Validation & Optimization			4.64% 1.35%	93.81% 95.16%	1	200 -	
Test Coverage (Never failing / Redundant tests)			1.35%	95.16%		150 -	
Limits Analysis			0.79%	97.10%	1 1	100 -	
			0.75%	97.86% 98.33%		50 -	
Specification, Guard band Limit Setting	\checkmark		0.36%	98.69%	I I		
Product Characterization			0.20%	98.89%	I	0.40 0.42 0.44	0.46 0.50 0.54 0.55 0.55 0.55
			0.16%	99.05% 99.21%			TN_20X20 (20 bins)
Wide / Sweep Data Handling	V		I Normal Quanti		•I	I Wafer Map	
CP / CPK Analysis, VDD / Temp Char Analysis	\checkmark		3.5		Color by: Lot ▼ + ▼	LOT_38.1	LOT_38.4
Fab / Supplier Matching & Qualification	\checkmark		1.5		LOT_181,1 LOT_38,1 LOT_38,4 LOT_38,4		Product Map Coto Dr Pri A Avg(ORR) 99432e-8 - 105148e-7 99432e-1 105148e-7 - 11052e-7
Reporting / Templates / Release to Production	\checkmark		-0.5 -			1.21e-7[1] LOT_39.1	1.19e-7 [1] LOT_181.1 LOT_181.1 1.10652e-7 - 1.16167e-7 1.16157e-7 - 1.21661e-7 1.21661e-7 - 1.27166e-7
Design / Layout Sensitivities to Process			-2.5 -				Defect Map
WS / FT to WAT: Die Level Process Sensitivity	\checkmark		9.4E-08	1.04E-07 19 OF	1.14Ė-07 1.24Ė-07 RR	1.14e-7 [2]	1.13e-7 [1]
On Chip Agents	\checkmark	\checkmark	Box Plot		Temp • + •	1 Bar Chart	Temp
Fault Diagnostics		\checkmark	8.80000 8.70000 8.60000 8.50000 8.40000		40c 0 c 125c 255c 70c	3.50000	
Fab/Foundry			8.30000 8.20000 8.00000 8.00000 7.90000 8.7.8000			(J 2.50000	
Design layout sesnitivities	V .		7,80000 7,70000 7,60000 7,50000	10c 0c 125c	260 70c Alpha level = 0.05	I.80000 1.00000 5.00000	
Split Lot Analysis	\checkmark		Count 11 Median 8 Outliers	28 52 28 05 8.045 8.1 3 3 0 Temp	82 80 RestMSE = 0.248 8.05 8.07 sqrt(2)q* = 3.877 2 0	0.00000 7.50 7.60 7.70 7.80	2 750 8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00

Yield Ramp

Yield Ramp & FA Diagnostics: Siemens Tessent + Exensio

Partnership with Tessent for BIC debug and FA

PDF/SULUTIONS

HVM – High Volume Manufacturing

Exensio Advanced Quality & Ops Path

Quality Shield is essential for to compete with Best-in-Class

Exensio Advanced Quality & Ops Path

 Offline Reporting Floor Monitoring OEE reporting Stoppages / RE losses 		 Real Time Rules Outlier Screens (DPAT, GDBN) Escape Prevention (eg Test count) 		
Operational Visibility	Operations Shield	Quality Shield	Machine Learning	
	Real Time Rules • Site2Site Yield • UPH Limit		Model Based Prediction Model Based Screening • Predictive Binning • ML Outlier Screening • "Bring Your Own Model"	

Powerful Rules for OSATs and Fabless

Operations Shield

Process Control Rules

- Fab & Packaging Problems
- Test Floor Problems

Quality Shield

Escape Prevention Rules

Stop errors from shipping

vana

Quality Shield

Outlier Detection Rules

Catch discrepant units

Powerful Rules for OSATs and Fabless: Detailed Rule Catalog

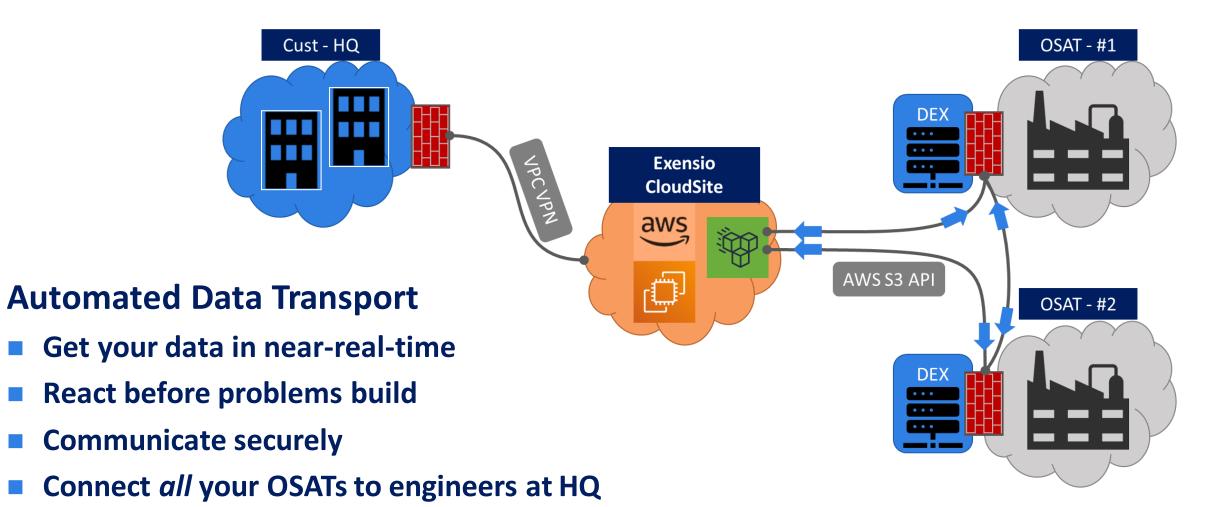
Process Control

- Yield
- Bin Percent / Count
- Lot Begin / End
- Parametric Test Statistic
- Parametric Test Yield
- Site-to-Site
 - Yield
 - Percent Delta
 - Test Statistic Delta
- Parametric Test SPC (WECO)
 - Oscillating / Outlier / Trend / Zone

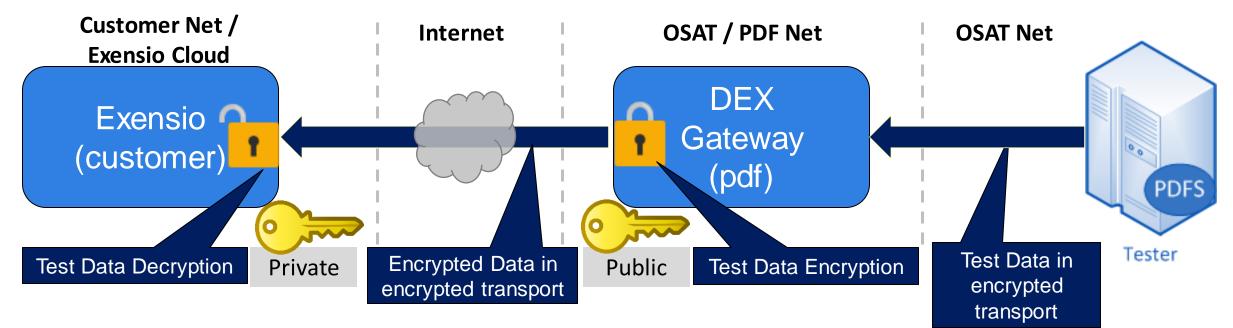
PDF/SOLUTIONS

Escape Prevention

- Consecutive Bin
- Stuck Unit (parametric)
- Test Count
- Bad Device Good Bin
- Good Device Bad Bin
- Limit Fail Good Bin
- Measurement Exception
- Limit Exception
- Device Test Time
- Retest Limit
- Mixed Lot Limit
- Units per Hour Limit
- Valid ECID


Outlier Detection

- DPAT
- GDBN
- Cluster Detection
- NNR
- Univariate / Multivariate
- Custom rules by equations


WECO Western Electric Co SPC Statistical process Control ECID Electronic/Exclusive Chip ID DPAT Dynamic Part Average Test GDBN Good Die Bad Neighborhood NNR Nearest Neighbor Residual

Data Exchange (DEX) Connects You & Your Suppliers

High-performance managed Exensio deployment with OSAT integration

Security : Encrypted Data Transport (Example: OSAT to Customer)

Encrypted Transport Across Public Networks

- Transport between DEX and Exensio nodes is encrypted and private
- Data is transmitted over encrypted tunnel
- Only intended destination server can decrypt transport payloads
 - Node-unique private encryption key required to decrypt payloads
 - Bulk payload encrypted with AES-256

In-Field Failures Automotive Doesn't End with Device Shipment

Containment & Root Cause of Complex FAs

Despite all your teams' good efforts, you will get FAs (Failure Analysis Requests)

Modern products getting more complicated

- Complex supply chains
- Chiplets & 2.5D/3D packages
- Advanced process nodes
- But your customers don't care
- They want the answers, now

Traceability & End-to-End Data Analytics make FA easier

End to End Analytics & Traceability for Better FA/RMA

■ WAT (aka PCM, E-Test)

- Parametric data

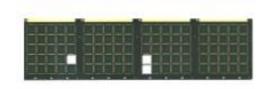
■ Wafer Sort (aka EWS, CP)

- Yield, binning
- Wafermaps
- Parametric data
- Equipment Details

Final Test (aka Class)

- Yield, binning
- Parametric Data
- Equipment Details

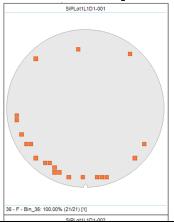
Packaging


Substrate Maps

SiPLot1SiP-005

/SiP/Block/Devices/L1D1: 100.00% (2/2) [1]

SiPLot1SiP-008

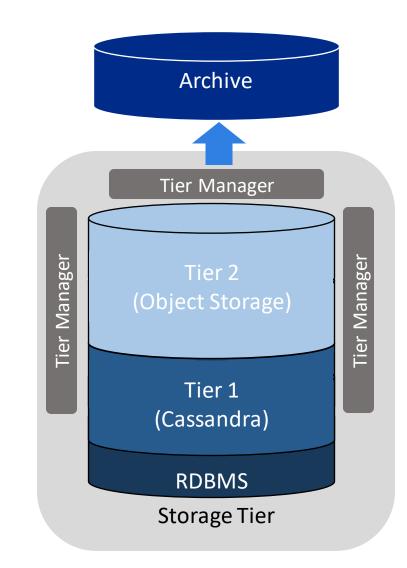


/SiP/Block/Devices/L1D1: 100.00% (3/3) [1]

Reconstituted Wafer Maps Use traceability to see failures at each

see failures at each of previous steps

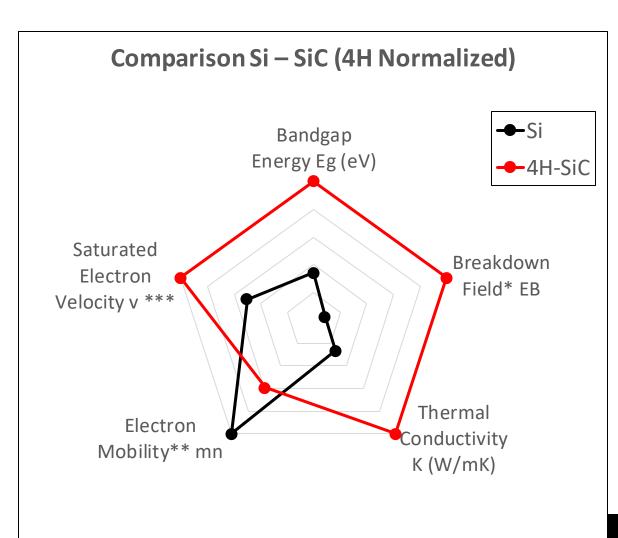
✓ ECID or Exensio
 Assembly Ops

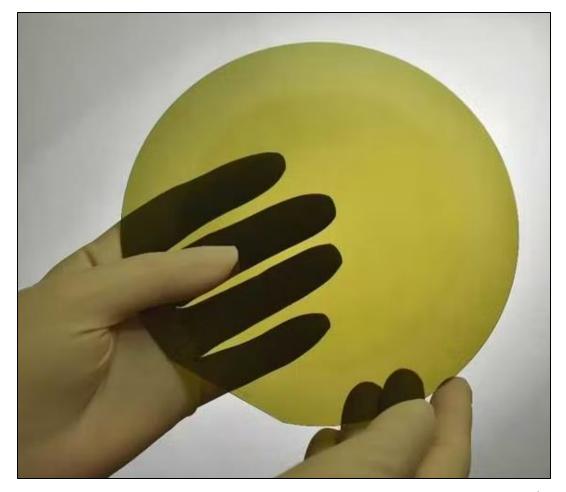


Defect Localization

- Logic using Scan Fault Diags
- Memory using Bitmap
- Both → Siemens Tessent collaboration

Exensio Cloud : Tiered Storage Benefits


- FA is impossible if you don't keep the data
- Automotive 10+ years data retention
- Keep your new data for fast retrieval
- Keep your old data for when you need it
 - Rarely
 - But urgently
- Seamless to users / Seamless to integration



Solutions for SiC Devices

Silicon Carbide - Introduction

Great for Power IC and RF

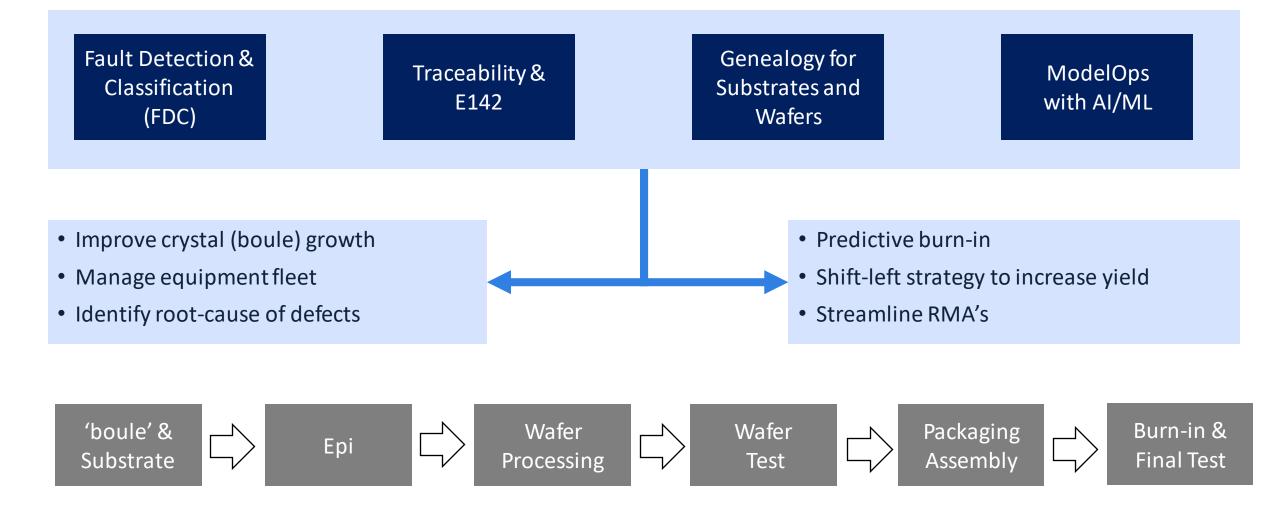
source: onsemi

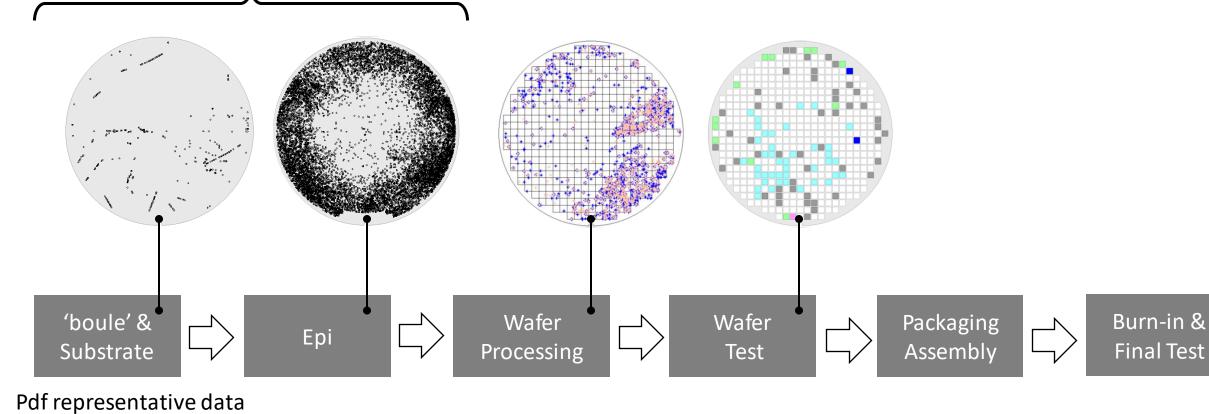
Challenges with SiC Manufacturing

- Complicated (in-house vs outsourced) material flow
- Lot reshuffling: wafer & lot genealogy
- High defectivity
- Equipment connectivity (150 & 200 mm)
- Small pucks vs large boules
- New types of subsurface defects hard to detect with conventional means
- No wafer scribe or ambiguous wafer ID
- Defect sampling for SEM Review: too many
- Unpatterned vs patterned wafers: registration

Compound Semiconductor: stoichiometry matters!

>250 polytypes: stacking faults are common

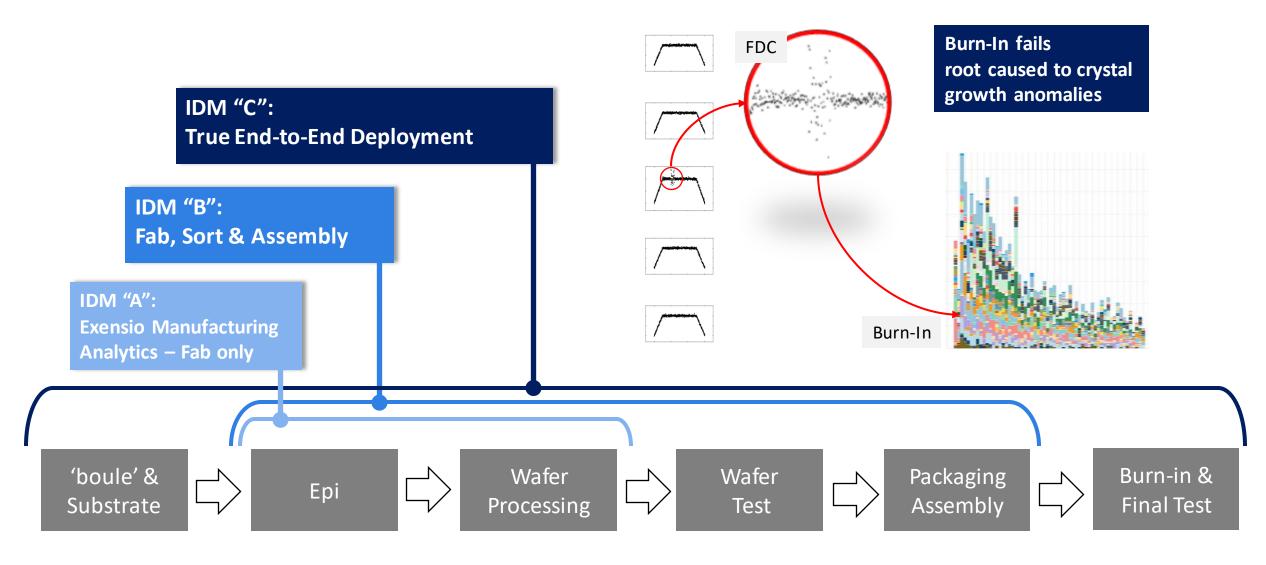

 \rightarrow inquire for more detail


 \rightarrow covered in this talk

source: ChemTube3D

SiC Package for Fabs and IDM's

SiC Defectivity


PDF/SOLUTIONS^{**}

\$\$\$

"SiC is where silicon was decades ago..."

Deployment Examples in SiC Manufacturing

- Electrification & ADAS driving rapid growth
- Many new entrants
- PDF: broadest and deepest analytics solution
- With specialized offerings
 - SiC package for EV products

Thank You

PDF/SOLUTIONSTM

pdf-solutions

Ŧ

pdfsolutionsinc

pdfs.inc

pdf_solutions

pdfs_cn