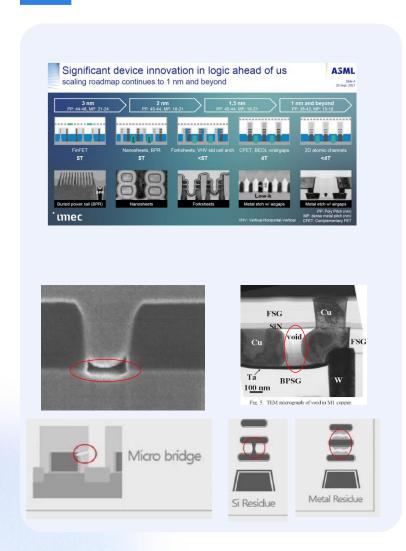
PDF/SOLUTIONS® 2025 Users Conference

DirectScan: Technology, Application and Adoption

Indranil De


December 3, 2025

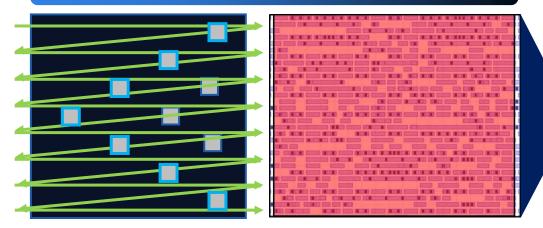
This presentation and discussions resulting from it may include future product features or fixes, or the expected timing of future releases. This information is intended only to highlight areas of possible future development and current prioritizations. Nothing in this presentation or the discussions stemming from it are a commitment to any future release, new product features or fixes, or the timing of any releases. Actual future releases may or may not include these product features or fixes, and changes to any roadmap or timeline are at the sole discretion of PDF Solutions, Inc. and may be made without any requirement for updating. For information on current prioritizations and intended future features or fixes, contact sales@pdf.com.

PDF trademarks, including PDF Solutions, Cimetrix, CV, eProbe, Exensio, Sapience, secureWISE, and the logos associated with such brands, are trademarks or registered trademarks of PDF Solutions, Inc. or its subsidiaries. Other trademarks used in this document are the property of their respective owners.

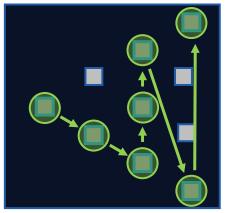
eProbe: Designed for Next Gen Semi Scaling

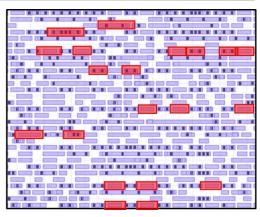
Key Trends/Drivers

- Increasing 3D nature of process integration today
 - Complex FEOL (Finfets, GAA, nano-ribbons)
 - Multilevel MOL stacks with multiple colors
- Drives more buried defects that are optically unresolvable.
 Needs electrical resolution possible with eBeam Voltage Contrast (VC) Inspection
- Most defects are not random but increasingly systematic. Driven by pattern/layout weaknesses, spatial trends and product specificity


DirectScan = eProbe(PointScan) + FIRE + Exensio

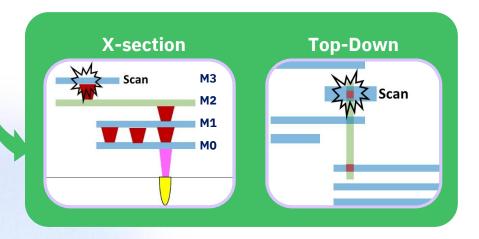
- eBeam VC Inspection Solution designed ground up towards this
- **VC Detection**: Focus on electrically relevant defects
- **Design-aware Inspection**: To understand layout weaknesses
- Product-based Learning: Yield learning directly on product vehicle


eBeam Inspection: Conventional vs. eProbe-PointScan


Conventional ebeam Inspection

- Region of interest scanned 100% by rastering
- Defective Pixels (grouped) reported in KLARF
- No knowledge of metal stubs during scanning
- Post inspection overlay to GDS is possible

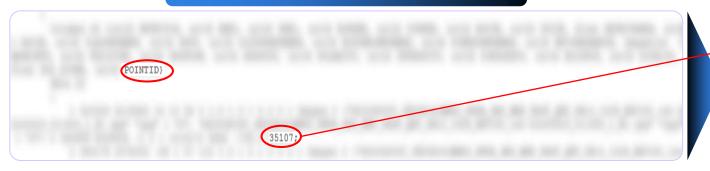
PointScan Inspection


Continuous Stage Motion

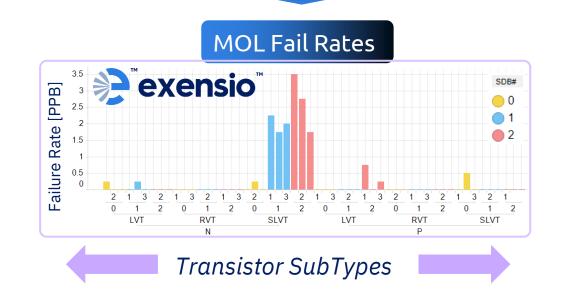
- Only pads of interest are scanned
- Defective PADS aka DUTs reported in KLARF
- <u>Design Aware Inspection</u>: eProbe knows precise pad type and GDS location while scanning
- eProbe-PointScan acts as a contactless ebeam tester
- Scans Billions of DUTs per hour
- 20-100x faster than conventional single beam tools for sparse inspections

Systematic Defects needs Targeted Inspection

Defect Type	VC Type	Inspection Layer	Location Constraint	Measure. Unit	VC Inspectable Locations / wafer	Total Locations / wafer	Ratio (%)
BEOL: V2	Open	M3 CMP	>Non-redundant V2 >M3 grounded to wafer >Smallest L/W combination	Meters	3.05	120.6	2.53
MOL: Buried Gate-Drain	Short	MOL Contact CMP	>Specific Xtor polarity >Avoid High_lkage Xtors >Avoid nbh gate-drain contacts	Million DUTs	23.1	2203	1.05
FEOL: Gate Stringers	Short	MOL Contact CMP	> Specific SRAM Array contacts	Million DUTs	493.2	1739	28.36

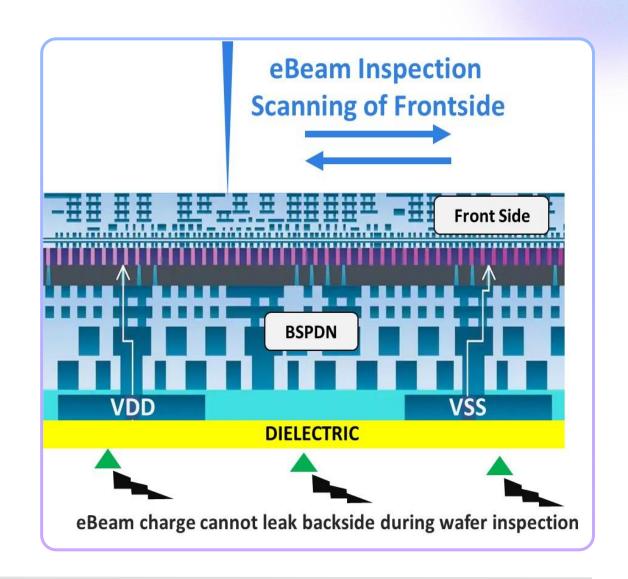

VC Inspectable Locations << Total Available Locations

DirectScan: Identify Product Weaknesses

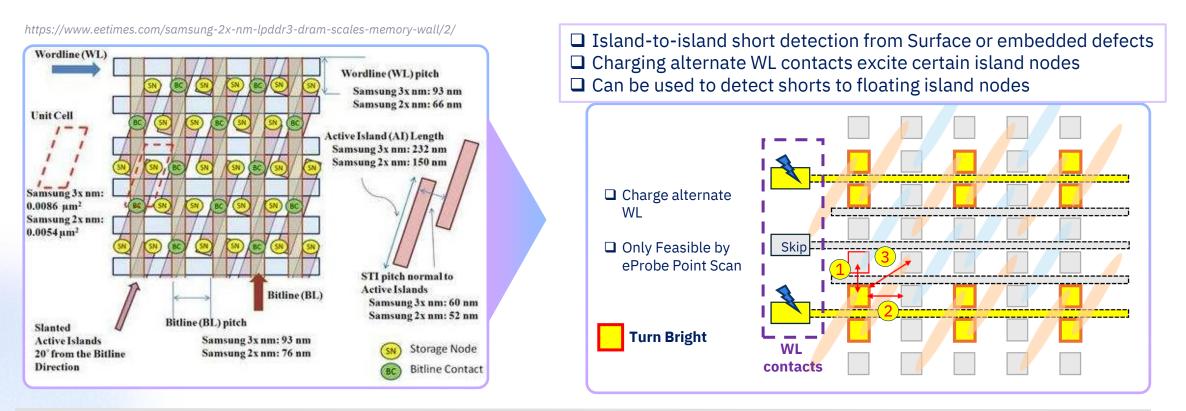

Example eProbe KLARF output

Attribute Lookup Table

Attrib	CX 🔻	NP ▼	VT-flavor ▼	Track 🔻	SDB# ▼	COAG 🔻
3510	1 CA	P	LVT	7	1	N
3510	7 CA	N	RVT	2	0	N
3523	5 CA	N	RVT	1	2	N
3523	9 CA	Р	LVT	1	0	N
3533	9 CB	Р	SLVT	6	0	N
3540	0 CB	N	SLVT	5	0	N
3545	7 CA	N	LVT	1	0	N
3546	1 CB	Р	LVT	6	0	Υ


- Attribute info for every inspected DUT pre-mined from FIRE analysis
- Attributed info for every defect is reported
- Fail Rates easily calculated for any attribute
- Design/layout weaknesses easily identified

PointScan for BSPDN & 3D-DRAM Wafer Inspection


- BSPDN wafer scan: No clear path for ebeam charge leakage to backside
- Strong charging, defocus, beam shift during eBeam inspection. Not easily amenable to ebeam inspection
- PointScan is favorable due to lower charge accumulation
- Demonstrated scan on BSPDN wafer in advanced Logic

PointScan: Allows Controlled "Charge and Sense"

- Successful detection of Storage Node Shorts in DRAM array
- Controlled "Charge and Sense" is Unique to PointScan
- Inspection Methodology: Charge WL & immediately Sense Array

DirectScan Adoption at Leading Edge

- Leading Edge Logic: Dominated by (A) MOL opens/shorts (B) BEOL systematic contact opens
- Leading Edge DRAM: Dominated by Periphery use cases requiring Point Vector Scanning

Product	Scan Area	Layer	Fail Type	
Leading-edge	□ Random Logic □ SRAM	MOL	GAA Gate-Drain Shorts GAA Gate-Cont Open	
Logic	□ Random Logic □ SRAM	MOL	GAA Gate-Epi/Silicide Open	
	Random Logic	BEOL (M0, 1x, 2x)	Systematic Contact Open	
	Random Logic	BEOL (M0, 1x, 2x)	Systematic Mx Shorts (T2T, S2S)	
	Random Logic	MOL	Leakage Estimation	
	Random Logic	BSPDN	Contact open/short (power Via, Source/Drain Via) (From local/global stress-relaxation)	
Leading-edge	Periphery BL	MOL	☐ Gate-Gate stringer shorts ☐ Gate-Drain shorts	
DRAM	Periphery WL	MOL	WL-WL shorts WL opens with Localization	
	Array	MOL	Array shorts	

Takeaways

eProbe: Designed for Voltage Contrast eBeam Inspection using **PointScan**

DirectScan Solution = eProbe(PointScan) + FIRE + Exensio

- Pointscan: High throughput for product inspection
- Attribute analysis: Faster TAT in understanding process weaknesses
- Less Wafer Charging: Highly suitable for BSPDN and 3Ddevices
- Controlled "Charge and Sense": Opens new applications

2022-2024: Used extensively in leading Logic nodes (FEOL/MOL/BEOL)

2024 - 2025: Increasing applications found for DRAM

Customer Presentation

SOLUTIONS®

BEAM

Customer Presentation

SOLUTIONS

Thank You PDF/SOLUTIONS

www.pdf.com

